

Discrete Mathematics

EIGHTH EDITION

Richard Johnsonbaugh

List of Symbols

LOGIC

```
p \lor q p or q; page 34 P \equiv Q P and Q are logically equivalent; page 45 p \land q p and q; page 34 \forall for all; page 58 \neg p not p; page 37 \exists there exists; page 60 p \rightarrow q if p, then q; pages 40–41 \therefore therefore; page 51 p \leftrightarrow q p if and only if q; pages 44–45
```

SET NOTATION

```
\{x_1,\ldots,x_n\}
                      set consisting of the elements x_1, \ldots, x_n; page 22
{x \mid p(x)}
                      set consisting of those elements x satisfying property p(x); page 22
Z, Z^-, Z^+, Z^{nonneg}
                      sets of integers, negative integers, positive integers, nonnegative integers; pages 22–23
Q, Q^-, Q^+, Q^{nonneg}
                      sets of rational numbers, negative rational numbers, positive rational numbers,
                      nonnegative rational numbers; pages 22–23
R, R^-, R^+, R^{nonneg}
                      sets of real numbers, negative real numbers, positive real numbers,
                      nonnegative real numbers; pages 22–23
x \in X
                      x is an element of X; page 23
x \notin X
                      x is not an element of X; page 23
X = Y
                      set equality (X and Y have the same elements); page 23
|X|
                      cardinality of X (number of elements in X); page 23
Ø
                      empty set; page 23
X \subset Y
                      X is a subset of Y; page 24
X \subset Y
                      X is a proper subset of Y; page 25
                      power set of X (all subsets of X); page 25
\mathcal{P}(X)
X \cup Y
                      X union Y (all elements in X or Y); page 25
\bigcup X_i
                      union of X_1, \ldots, X_n (all elements that belong to at least one of X_1, X_2, \ldots, X_n); page 29
                      union of X_1, X_2, \ldots (all elements that belong to at least one of X_1, X_2, \ldots); page 29
                      union of S (all elements that belong to at least one set in S); page 28
X \cap Y
                      X intersect Y (all elements in X and Y); pages 25–26
                      intersection of X_1, \ldots, X_n (all elements that belong to every one of X_1, X_2, \ldots, X_n); page 29
                      intersection of X_1, X_2, \ldots (all elements that belong to every one of X_1, X_2, \ldots); page 29
i=1
\cap S
                      intersection of S (all elements that belong to every set in S); page 29
X - Y
                      set difference (all elements in X but not in Y); page 26
\overline{X}
                      complement of X (all elements not in X); page 26
(x, y)
                      ordered pair; page 29
(x_1,\ldots,x_n)
                      n-tuple; page 30
```

```
X \times Y Cartesian product of X and Y [pairs (x, y) with x in X and y in Y]; page 29 X_1 \times X_2 \times \cdots \times X_n Cartesian product of X_1, X_2, \ldots, X_n (n-tuples with x_i \in X_i); page 30 X \triangle Y symmetric difference of X and Y; page 33
```

RELATIONS

```
xRy (x, y) is in R (x is related to y by the relation R); page 161 [x] equivalence class containing x; page 173 R^{-1} inverse relation [all\ (y, x)\ with\ (x, y)\ in\ R]; page 167 R_2 \circ R_1 composition of relations; page 167 x \le y xRy; page 166
```

FUNCTIONS

```
f(x) value assigned to x; page 134

f: X \to Y function from X to Y; page 133

f \circ g composition of f and g; page 142

f^{-1} inverse function [all (y, x) with (x, y) in f]; pages 141

f(n) = O(g(n)) |f(n)| \le C|g(n)| for n sufficiently large; page 206

f(n) = \Omega(g(n)) |c|g(n)| \le |f(n)| \le C|g(n)| for n sufficiently large; page 206

f(n) = \Theta(g(n)) |c|g(n)| \le |f(n)| \le C|g(n)| for n sufficiently large; page 206
```

COUNTING

```
C(n, r) number of r-combinations of an n-element set (n!/[(n-r)!r!]); page 293 P(n, r) number of r-permutations of an n-element set [n(n-1)\cdots(n-r+1)]; page 291
```

GRAPHS

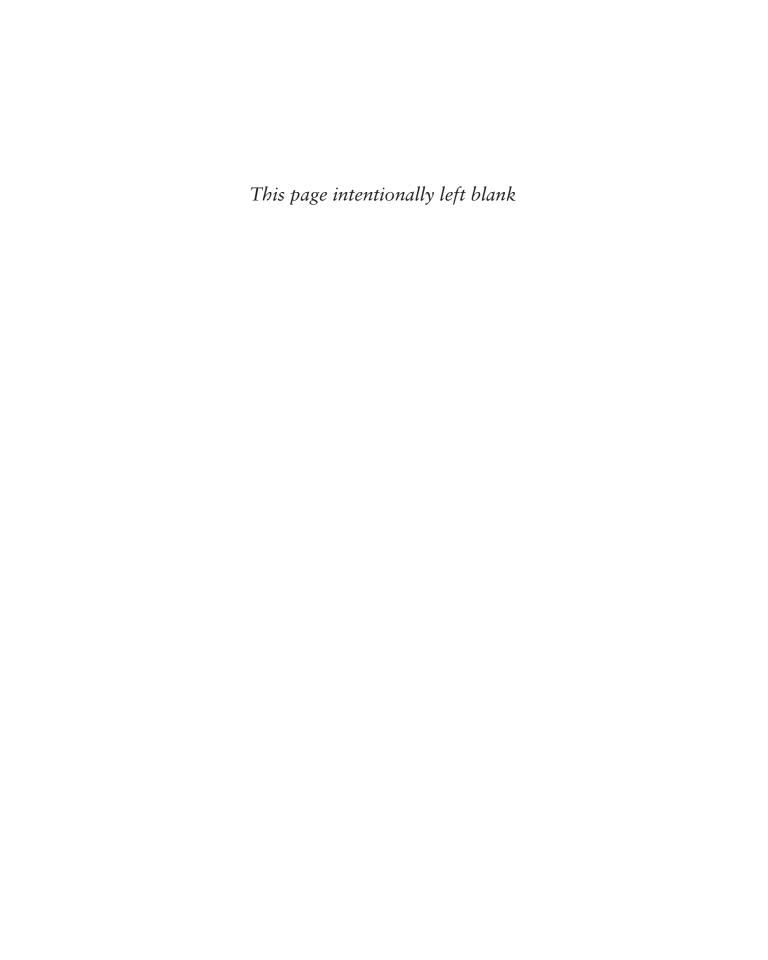
```
G = (V, E)
                       graph G with vertex set V and edge set E; page 395
(v, w)
                       edge; page 395
\delta(v)
                       degree of vertex v; page 408
(v_1,\ldots,v_n)
                       path from v_1 to v_n; page 404–405
(v_1, ..., v_n), v_1 = v_n cycle; page 407
K_n
                       complete graph on n vertices; page 400
K_{m,n}
                       complete bipartite graph on m and n vertices; page 401
w(i, j)
                       weight of edge (i, j); page 425
                       flow in edge (i, j); page 527
F_{ii}
                       capacity of edge (i, j); page 527
C_{ij}
(P, \overline{P})
                       cut in a network; page 540
```

PROBABILITY

```
P(x) probability of outcome x; page 321

P(E) probability of event E; page 322

P(E \mid F) conditional probability of E given F[P(E \cap F)/P(F)]; page 326
```



Discrete Mathematics

Eighth Edition Global Edition

Richard Johnsonbaugh

DePaul University, Chicago

Director, Portfolio Management Deirdre Lynch
Executive Editor Jeff Weidenaar
Acquisitions Editor, Global Edition Sourabh Maheshwari
Editorial Assistant Jennifer Snyder
Content Producer Lauren Morse
Assistant Project Editor, Global Edition Sulagna Dasgupta
Managing Producer Scott Disanno
Media Producer Nicholas Sweeney
Media Production Manager, Global Edition Vikram Kumar
Manufacturing & Composition Manager, Global Edition Caterina Pellegrino
Product Marketing Manager Yvonne Vannatta

Field Marketing Manager Evan St. Cyr
Marketing Assistant Jennifer Myers
Senior Author Support/Technology Specialist Joe Vetere
Rights and Permissions Project Manager Gina Cheselka
Manufacturing Buyer Carol Melville, LSC Communications
Associate Director of Design Blair Brown
Text Design, Production Coordination, and Composition SPi Global
Cover Design Lumina Datamatics Ltd.
Cover image: SUJITTRA PHONGVIVAT/Shutterstock

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified. Microsoft® Windows Explorer®, and Microsoft Excel® are registered trademarks of the microsoft corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the microsoft corporation.

Pearson Education Limited KAO Two KAO Park Harlow CM17 9NA United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited 2019

The right of Richard Johnsonbaugh to be identified as the author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Discrete Mathematics, Eighth Edition, ISBN 978-0-321-96468-7 by Richard Johnsonbaugh, published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 1-292-23370-2 ISBN 13: 978-1-292-23370-3

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10987654321

Typeset by SPi Global Printed and bound by Vivar in Malaysia

Contents

Preface 13

Sets and Logic 21

1.1	Sets 22	
1.2	Propositions 34	
1.3	Conditional Propositions and Logical Equivalence	40
1.4	Arguments and Rules of Inference 51	
1.5	Quantifiers 56	
1.6	Nested Quantifiers 69	
	Duahlam Calving Company Owentife and 77	

Problem-Solving Corner: Quantifiers 77
Chapter 1 Notes 78
Chapter 1 Review 78
Chapter 1 Self-Test 80
Chapter 1 Computer Exercises 80

Proofs 82

- 2.1 Mathematical Systems, Direct Proofs, and Counterexamples 832.2 Many Matheday of Proofs 22
- **2.2** More Methods of Proof 92 **Problem-Solving Corner:** Proving Some Properties of Real Numbers 103
- **2.3** Resolution Proofs[†] 105
- **2.4** Mathematical Induction 108 **Problem-Solving Corner:** Mathematical Induction 120
- 2.5 Strong Form of Induction and the Well-Ordering Property 122 Chapter 2 Notes 129 Chapter 2 Review 129

[†]This section can be omitted without loss of continuity.

Functions, Sequences, and Relations 131

- **3.1** Functions 131
 - **Problem-Solving Corner:** Functions 148
- **3.2** Sequences and Strings 149
- **3.3** Relations 161
- **3.4** Equivalence Relations 171
 - **Problem-Solving Corner:** Equivalence Relations 178
- **3.5** Matrices of Relations 180
- **3.6** Relational Databases[†] 185

Chapter 3 Notes 190

Chapter 3 Review 190

Chapter 3 Self-Test 191

Chapter 3 Computer Exercises 192

4 Algorithms 193

- **4.1** Introduction 193
- **4.2** Examples of Algorithms 197
- **4.3** Analysis of Algorithms 204

Problem-Solving Corner: Design and Analysis

of an Algorithm 222

4.4 Recursive Algorithms 224

Chapter 4 Notes 231

Chapter 4 Review 231

Chapter 4 Self-Test 232

Chapter 4 Computer Exercises 232

5 Introduction to Number Theory 234

- **5.1** Divisors 234
- **5.2** Representations of Integers and Integer Algorithms 244
- **5.3** The Euclidean Algorithm 258

Problem-Solving Corner: Making Postage 269

5.4 The RSA Public-Key Cryptosystem 270

Chapter 5 Notes 272

Chapter 5 Review 273

Chapter 5 Self-Test 273

Chapter 5 Computer Exercises 274

[†]This section can be omitted without loss of continuity.

Counting Methods and the Pigeonhole Principle 275

- **6.1** Basic Principles 275
 - **Problem-Solving Corner:** Counting 287
- **6.2** Permutations and Combinations 289 **Problem-Solving Corner:** Combinations 301
- **6.3** Generalized Permutations and Combinations 303
- **6.4** Algorithms for Generating Permutations and Combinations 309
- **6.5** Introduction to Discrete Probability 317
- **6.6** Discrete Probability Theory[†] 321
- **6.7** Binomial Coefficients and Combinatorial Identities 333
- Chapter 6 Notes 344
 Chapter 6 Review 344
 Chapter 6 Self-Test 345
 Chapter 6 Computer Exercises 346

Recurrence Relations 347

- **7.1** Introduction 347
- 7.2 Solving Recurrence Relations 358Problem-Solving Corner: Recurrence Relations 370
- **7.3** Applications to the Analysis of Algorithms 373
- 7.4 The Closest-Pair Problem[†] 385 Chapter 7 Notes 390 Chapter 7 Review 391 Chapter 7 Self-Test 391 Chapter 7 Computer Exercises 392

Graph Theory 393

- **8.1** Introduction 393
- **8.2** Paths and Cycles 404

Problem-Solving Corner: Graphs 415

- **8.3** Hamiltonian Cycles and the Traveling Salesperson Problem 416
- **8.4** A Shortest-Path Algorithm 425
- **8.5** Representations of Graphs 430
- **8.6** Isomorphisms of Graphs 435
- **8.7** Planar Graphs 442
- **8.8** Instant Insanity † 449

[†]This section can be omitted without loss of continuity.

Chapter 8 Notes 453 Chapter 8 Review 454 Chapter 8 Self-Test 455 Chapter 8 Computer Exercises 456

Trees 458

- **9.1** Introduction 458
- **9.2** Terminology and Characterizations of Trees 465 **Problem-Solving Corner:** Trees 470
- **9.3** Spanning Trees 472
- **9.4** Minimal Spanning Trees 479
- **9.5** Binary Trees 485
- **9.6** Tree Traversals 491
- **9.7** Decision Trees and the Minimum Time for Sorting 497
- **9.8** Isomorphisms of Trees 503
- **9.9** Game Trees[†] 513

Chapter 9 Notes 522

Chapter 9 Review 522

Chapter 9 Self-Test 523

Chapter 9 Computer Exercises 525

1 Network Models 526

- **10.1** Introduction 526
- **10.2** A Maximal Flow Algorithm 531
- **10.3** The Max Flow, Min Cut Theorem 539
- **10.4** Matching 543

Problem-Solving Corner: Matching 548

Chapter 10 Notes 549

Chapter 10 Review 550

Chapter 10 Self-Test 550

Chapter 10 Computer Exercises 551

1 1 Boolean Algebras and Combinatorial Circuits 552

- **11.1** Combinatorial Circuits 552
- **11.2** Properties of Combinatorial Circuits 559
- **11.3** Boolean Algebras 564

Problem-Solving Corner: Boolean Algebras 569

- **11.4** Boolean Functions and Synthesis of Circuits 571
- **11.5** Applications 576

[†]This section can be omitted without loss of continuity.

Chapter 11 Notes	584
Chapter 11 Review	585
Chapter 11 Self-Tes	t 585

Chapter 11 Computer Exercises 587

1	7	Automata.	Grammars, and	d Languages	588
		racomaca	Grannians, and	a Languages	

- **12.1** Sequential Circuits and Finite-State Machines 588
- **12.2** Finite-State Automata 594
- **12.3** Languages and Grammars 599
- **12.4** Nondeterministic Finite-State Automata 609
- Relationships Between Languages and Automata 615
 Chapter 12 Notes 621
 Chapter 12 Review 622
 Chapter 12 Self-Test 622
 Chapter 12 Computer Exercises 623

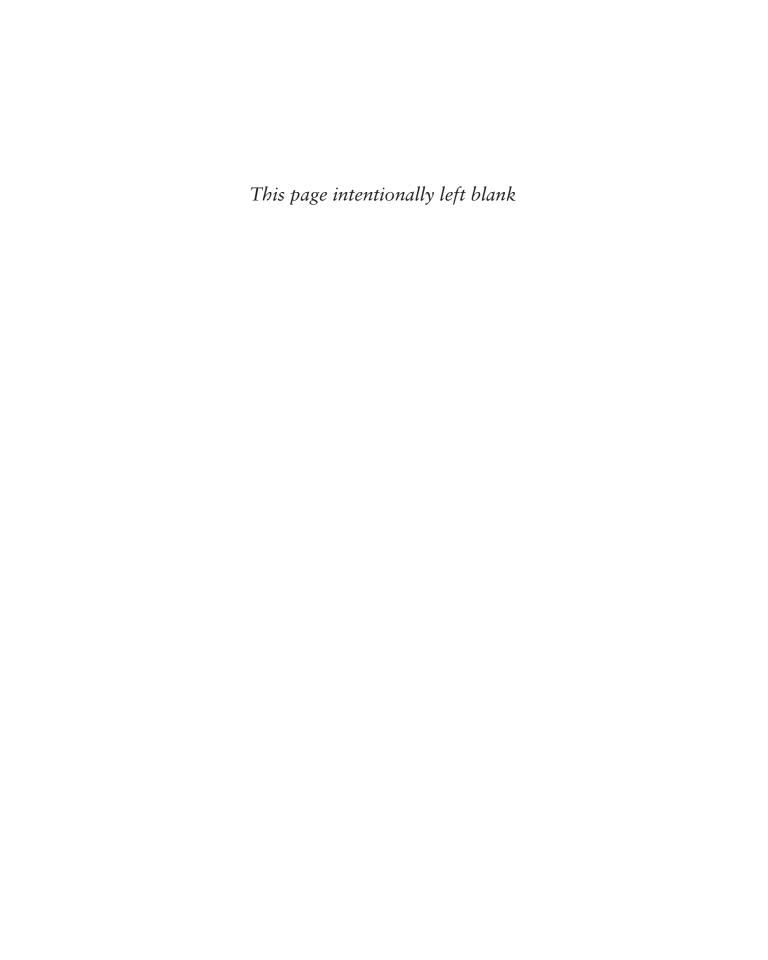
Appendix 625

- **Matrices** 625
- Algebra Review 629
- Pseudocode 640

References 647

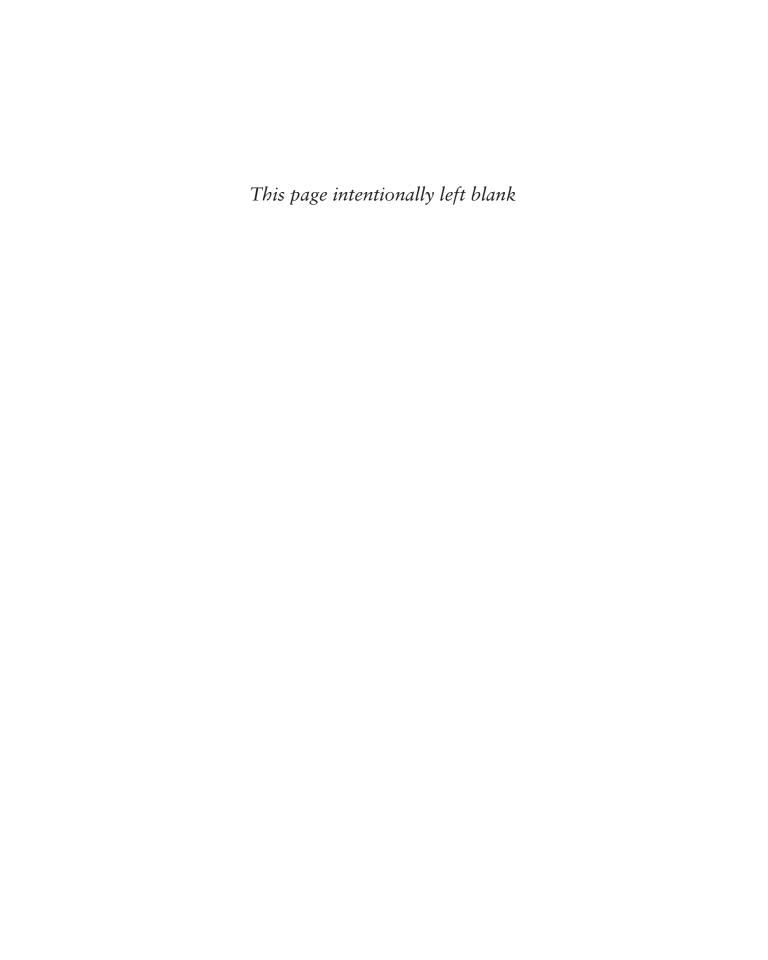
Hints and Solutions to Selected Exercises 653

Index 755



Dedication

To Pat, my wife, for her continuous support through my many book projects, for formally and informally copy-editing my books, for maintaining good cheer throughout, and for preventing all *egregious* mistakes that would have otherwise found their way into print. Her contributions are deeply appreciated.



Preface

This updated edition is intended for a one- or two-term introductory course in discrete mathematics, based on my experience in teaching this course over many years and requests from users of previous editions. Formal mathematics prerequisites are minimal; calculus is not required. There are no computer science prerequisites. The book includes examples, exercises, figures, tables, sections on problem-solving, sections containing problem-solving tips, section reviews, notes, chapter reviews, self-tests, and computer exercises to help the reader master introductory discrete mathematics. In addition, an Instructor's Solutions Manual and website are available.

In the early 1980s there were few textbooks appropriate for an introductory course in discrete mathematics. However, there was a need for a course that extended students' mathematical maturity and ability to deal with abstraction, which also included useful topics such as combinatorics, algorithms, and graphs. The original edition of this book (1984) addressed this need and significantly influenced the development of discrete mathematics courses. Subsequently, discrete mathematics courses were endorsed by many groups for several different audiences, including mathematics and computer science majors. A panel of the Mathematical Association of America (MAA) endorsed a year-long course in discrete mathematics. The Educational Activities Board of the Institute of Electrical and Electronics Engineers (IEEE) recommended a freshman discrete mathematics course. The Association for Computing Machinery (ACM) and IEEE accreditation guidelines mandated a discrete mathematics course. This edition, like its predecessors, includes topics such as algorithms, combinatorics, sets, functions, and mathematical induction endorsed by these groups. It also addresses understanding and constructing proofs and, generally, expanding mathematical maturity.

New to This Edition

The changes in this book, the eighth edition, result from comments and requests from numerous users and reviewers of previous editions of the book. This edition includes the following changes from the seventh edition:

- The web icons in the seventh edition have been replaced by short URLs, making it possible to quickly access the appropriate web page, for example, by using a hand-held device.
- The exercises in the chapter self-tests no longer identify the relevant sections making the self-test more like a real exam. (The hints to these exercises *do* identify the relevant sections.)

- Examples that are worked problems clearly identify where the solution begins and ends.
- The number of exercises in the first three chapters (Sets and Logic; Proofs; and Functions, Sequences, and Relations) has been increased from approximately 1640 worked examples and exercises in the seventh edition to over 1750 in the current edition.
- Many comments have been added to clarify potentially tricky concepts (e.g., "subset" and "element of," collection of sets, logical equivalence of a sequence of propositions, logarithmic scale on a graph).
- There are more examples illustrating diverse approaches to developing proofs and alternative ways to prove a particular result [see, e.g., Examples 2.2.4 and 2.2.8; Examples 6.1.3(c) and 6.1.12; Examples 6.7.7, 6.7.8, and 6.7.9; Examples 6.8.1 and 6.8.2].
- A number of definitions have been revised to allow them to be more directly applied in proofs [see, e.g., one-to-one function (Definition 3.1.22) and onto function (Definition 3.1.29)].
- Additional real-world examples (see descriptions in the following section) are included
- The altered definition of sequence (Definition 3.2.1) provides more generality and makes subsequent discussion smoother (e.g., the discussion of subsequences).
- Exercises have been added (Exercises 40–49, Section 5.1) to give an example of an algebraic system in which prime factorization does not hold.
- An application of the binomial theorem is used to prove Fermat's little theorem (Exercises 40 and 41, Section 6.7).
- There is now a randomized algorithm to search for a Hamiltonian cycle in a graph (Algorithm 8.3.10).
- The Closest-Pair Problem (Section 13.1 in the seventh edition) has been integrated into Chapter 7 (Recurrence Relations) in the current edition. The algorithm to solve the closest-pair problem is based on merge sort, which is discussed and analyzed in Chapter 7. Chapter 13 in the seventh edition, which has now been removed, had only one additional section.
- A number of recent books and articles have been added to the list of references, and several book references have been updated to current editions.
- The number of exercises has been increased to nearly 4500. (There were approximately 4200 in the seventh edition.)

Contents and Structure

Content Overview

Chapter 1 Sets and Logic

Coverage includes quantifiers and features practical examples such as using the Google search engine (Example 1.2.13). We cover translating between English and symbolic expressions as well as logic in programming languages. We also include a logic game (Example 1.6.15), which offers an alternative way to determine whether a quantified propositional function is true or false.

Chapter 2 Proofs

Proof techniques discussed include direct proofs, counterexamples, proof by contradiction, proof by contrapositive, proof by cases, proofs of equivalence, existence proofs (constructive and nonconstructive), and mathematical induction. We present loop invariants as a practical application of mathematical induction. We also include a brief, optional section on resolution proofs (a proof technique that can be automated).

Chapter 3 Functions, Sequences, and Relations

The chapter includes strings, sum and product notations, and motivating examples such as the Luhn algorithm for computing credit card check digits, which opens the chapter. Other examples include an introduction to hash functions (Example 3.1.15), pseudorandom number generators (Example 3.1.16). a real-world example of function composition showing its use in making a price comparison (Example 3.1.45), an application of partial orders to task scheduling (Section 3.3), and relational databases (Section 3.6).

Chapter 4 Algorithms

The chapter features a thorough discussion of algorithms, recursive algorithms, and the analysis of algorithms. We present a number of examples of algorithms before getting into big-oh and related notations (Sections 4.1 and 4.2), thus providing a gentle introduction and motivating the formalism that follows. We then continue with a full discussion of the "big oh," omega, and theta notations for the growth of functions (Section 4.3). Having all of these notations available makes it possible to make precise statements about the growth of functions and the time and space required by algorithms.

We use the algorithmic approach throughout the remainder of the book. We mention that many modern algorithms do not have all the properties of classical algorithms (e.g., many modern algorithms are not general, deterministic, or even finite). To illustrate the point, we give an example of a randomized algorithm (Example 4.2.4). Algorithms are written in a flexible form of pseudocode, which resembles currently popular languages such as C, C++, and Java. (The book does not assume any computer science prerequisites; the description of the pseudocode used is given in Appendix C.) Among the algorithms presented are:

- Tiling (Section 4.4)
- Euclidean algorithm for finding the greatest common divisor (Section 5.3)
- RSA public-key encryption algorithm (Section 5.4)
- Generating combinations and permutations (Section 6.4)
- Merge sort (Section 7.3)
- Finding a closest pair of points (Section 7.4)
- Dijkstra's shortest-path algorithm (Section 8.4)
- Backtracking algorithms (Section 9.3)
- Breadth-first and depth-first search (Section 9.3)
- Tree traversals (Section 9.6)
- Evaluating a game tree (Section 9.9)
- Finding a maximal flow in a network (Section 10.2)

Chapter 5 Introduction to Number Theory

The chapter includes classical results (e.g., divisibility, the infinitude of primes, fundamental theorem of arithmetic), as well as algorithmic number theory (e.g., the Euclidean algorithm to find the greatest common divisor, exponentiation using repeated squaring, computing s and t such that gcd(a, b) = sa + tb, computing an inverse modulo an inte-

ger). The major application is the RSA public-key cryptosystem (Section 5.4). The calculations required by the RSA public-key cryptosystem are performed using the algorithms previously developed in the chapter.

Chapter 6 Counting Methods and the Pigeonhole Principle

Coverage includes combinations, permutations, discrete probability (optional Sections 6.5 and 6.6), and the Pigeonhole Principle. Applications include internet addressing (Section 6.1) and real-world pattern recognition problems in telemarketing (Example 6.6.21) and virus detection (Example 6.6.22) using Bayes' Theorem.

Chapter 7 Recurrence Relations

The chapter includes recurrence relations and their use in the analysis of algorithms.

Chapter 8 Graph Theory

Coverage includes graph models of parallel computers, the knight's tour, Hamiltonian cycles, graph isomorphisms, and planar graphs. Theorem 8.4.3 gives a simple, short, elegant proof of the correctness of Dijkstra's algorithm.

Chapter 9 Trees

Coverage includes binary trees, tree traversals, minimal spanning trees, decision trees, the minimum time for sorting, and tree isomorphisms.

Chapter 10 Network Models

Coverage includes the maximal flow algorithm and matching.

Chapter 11 Boolean Algebras and Combinatorial Circuits

Coverage emphasizes the relation of Boolean algebras to combinatorial circuits.

Chapter 12 Automata, Grammars, and Languages

Our approach emphasizes modeling and applications. We discuss the *SR* flip-flop circuit in Example 12.1.11, and we describe fractals, including the von Koch snowflake, which can be described by special kinds of grammars (Example 12.3.19).

Book frontmatter and endmatter

Appendixes include coverage of matrices, basic algebra, and pseudocode. A reference section provides more than 160 references to additional sources of information. Front and back endpapers summarize the mathematical and algorithm notation used in the book.

Features of Content Coverage

- A strong emphasis on the interplay among the various topics. Examples of this include:
 - We closely tie mathematical induction to recursive algorithms (Section 4.4).
 - We use the Fibonacci sequence in the analysis of the Euclidean algorithm (Section 5.3).
 - Many exercises throughout the book require mathematical induction.
 - We show how to characterize the components of a graph by defining an
 equivalence relation on the set of vertices (see the discussion following
 Example 8.2.13).
 - We count the number of nonisomorphic n-vertex binary trees (Theorem 9.8.12).
- A strong emphasis on reading and doing proofs. We illustrate most proofs of theorems with annotated figures and/or motivate them by special Discussion sec-

tions. Separate sections (Problem-Solving Corners) show students how to attack and solve problems and how to do proofs. Special end-of-section Problem-Solving Tips highlight the main problem-solving techniques of the section.

- A large number of applications, especially applications to computer science.
- **Figures and tables** illustrate concepts, show how algorithms work, elucidate proofs, and motivate the material. Several figures illustrate proofs of theorems. The captions of these figures provide additional explanation and insight into the proofs.

Textbook Structure

Each chapter is organized as follows:

Chapter X Overview

Section X.1

Section X.1 Review Exercises

Section X.1 Exercises

Section X.2

Section X.2 Review Exercises

Section X.2 Exercises

:

Chapter X Notes

Chapter X Review

Chapter X Self-Test

Chapter X Computer Exercises

In addition, most chapters have **Problem-Solving Corners** (see "Hallmark Features" for more information about this feature).

Section review exercises review the key concepts, definitions, theorems, techniques, and so on of the section. All section review exercises have answers in the back of the book. Although intended for reviews of the sections, section review exercises can also be used for placement and pretesting.

Chapter notes contain suggestions for further reading. **Chapter reviews** provide reference lists of the key concepts of the chapters. **Chapter self-tests** contain exercises based on material from throughout the chapter, with answers in the back of the book.

Computer exercises include projects, implementation of some of the algorithms, and other programming related activities. Although there is no programming prerequisite for this book and no programming is introduced in the book, these exercises are provided for those readers who want to explore discrete mathematics concepts with a computer.

Hallmark Features

Exercises

The book contains nearly 4500 exercises, approximately 150 of which are computer exercises. We use a star to label exercises felt to be more challenging than average. Exercise numbers in color (approximately one-third of the exercises) indicate that the exercise has a hint or solution in the back of the book. The solutions to most of the remaining exercises may be found in the Instructor's Guide. A handful of exercises are clearly identified as requiring calculus. No calculus concepts are used in the main body of the book and, except for these marked exercises, no calculus is needed to solve the exercises.

Examples

The book contains almost 650 worked examples. These examples show students how to tackle problems in discrete mathematics, demonstrate applications of the theory, clarify proofs, and help motivate the material.

Problem-Solving Corners

The Problem-Solving Corner sections help students attack and solve problems and show them how to do proofs. Written in an informal style, each is a self-contained section centered around a problem. The intent of these sections is to go beyond simply presenting a proof or a solution to the problem: we show alternative ways of attacking a problem, discuss what to look for in trying to obtain a solution to a problem, and present problem-solving and proof techniques.

Each Problem-Solving Corner begins with a statement of a problem. We then discuss ways to attack the problem, followed by techniques for finding a solution. After we present a solution, we show how to correctly write it up in a formal manner. Finally, we summarize the problem-solving techniques used in the section. Some sections include a Comments subsection, which discusses connections with other topics in mathematics and computer science, provides motivation for the problem, and lists references for further reading about the problem. Some Problem-Solving Corners conclude with a few exercises.

Supplements and Technology

Instructor's Solution Manual (downloadable)

ISBN-10: 1-292-23371-0 | ISBN-13: 978-1-292-23371-0

The Instructor's Solutions Manual, written by the author, provides worked-out solutions for most exercises in the text. It is available for download to qualified instructors from the Pearson Instructor Resource Center www.pearsonglobaleditions.com.

Web Support

The short URLs in the margin of the text provide students with direct access to relevant content at point-of-use, including:

- Expanded explanations of difficult material and links to other sites for additional information about discrete mathematics topics.
- Computer programs (in C or C++).

The URL goo. gl/STo1E7 provides access to all of the above resources plus an errata list for the text.

NOTE:

When you enter URLs that appear in the text, take care to distinguish the following characters:

l = lowercase lI = uppercase l

1 = one

0 = uppercase 0

0 = zero

Acknowledgments

Special thanks go to reviewers of the text, who provided valuable input for this revision:

Venkata Dinavahi, *University of Findlay* Matthew Elsey, *New York University* Christophe Giraud-Carrier, *Brigham Young University* Yevgeniy Kovchegov, Oregon State University
Filix Maisch, Oregon State University
Tyler McMillen, California State University, Fullerton
Christopher Storm, Adelphi University
Donald Vestal, South Dakota State University
Guanghua Zhao, Fayetteville State University

Thanks also to all of the users of the book for their helpful letters and e-mail.

I am grateful to my favorite consultant, Patricia Johnsonbaugh, for her careful reading of the manuscript, improving the exposition, catching miscues I wrote but should not have, and help with the index.

I have received consistent support from the staff at Pearson. Special thanks for their help go to Lauren Morse at Pearson, who managed production, Julie Kidd at SPi Global, who managed the design and typesetting, and Nick Fiala at St. Cloud State University, who accurately checked various stages of proof.

Finally, I thank editor Jeff Weidenaar who has been very helpful to me in preparing this edition. He paid close attention to details in the book, suggested several design enhancements, made many specific recommendations which improved the presentation and comprehension, and proposed changes which enhanced readability.

Richard Johnsonbaugh

Acknowledgments for the Global Edition

Pearson would like to thank the following people for their contributions to the Global Edition of this book.

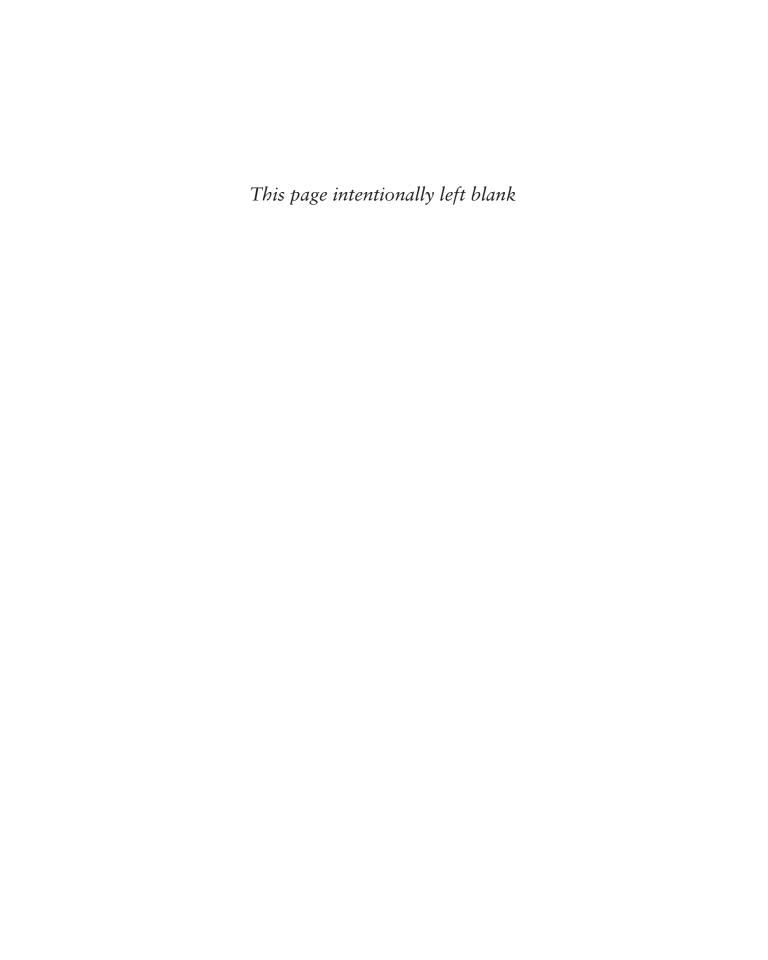
Contributors

Shweta Arora

Katarzyna Zuleta Estrugo, École Polytechnique Fédérale de Lausanne

Reviewers

Seema Jain, Visvesvaraya National Institute of Technology Mohammad Kacim, Holy Spirit University of Kaslik Parveen Kumar Winston Sweatman, Massey University



Chapter 1

SETS AND LOGIC

- **1.1** Sets
- **1.2** Propositions
- **1.3** Conditional Propositions and Logical Equivalence
- **1.4** Arguments and Rules of Inference
- **1.5** Quantifiers
- **1.6** Nested Quantifiers

Go Online

For more on logic, see goo.gl/vfki9p

Chapter 1 begins with sets. A **set** is a collection of objects; order is not taken into account. Discrete mathematics is concerned with objects such as graphs (sets of vertices and edges) and Boolean algebras (sets with certain operations defined on them). In this chapter, we introduce set terminology and notation. In Chapter 2, we treat sets more formally after discussing proof and proof techniques. However, in Section 1.1, we provide a taste of the logic and proofs to come in the remainder of Chapter 1 and in Chapter 2.

Logic is the study of reasoning; it is specifically concerned with whether reasoning is correct. Logic focuses on the relationship among statements as opposed to the content of any particular statement. Consider, for example, the following argument:

All mathematicians wear sandals.

Anyone who wears sandals is an algebraist.

Therefore, all mathematicians are algebraists.

Technically, logic is of no help in determining whether any of these statements is true; however, if the first two statements are true, logic assures us that the statement,

All mathematicians are algebraists,

is also true.

Logic is essential in reading and developing proofs, which we explore in detail in Chapter 2. An understanding of logic can also be useful in clarifying ordinary writing. For example, at one time, the following ordinance was in effect in Naperville, Illinois: "It shall be unlawful for any person to keep more than three dogs and three cats upon his property within the city." Was one of the citizens, who owned five dogs and no cats, in violation of the ordinance? Think about this question now; then analyze it (see Exercise 75, Section 1.2) after reading Section 1.2.

1.1 Sets

Go Online

For more on sets, see goo.gl/vfki9p

The concept of set is basic to all of mathematics and mathematical applications. A **set** is simply a collection of objects. The objects are sometimes referred to as elements or members. If a set is finite and not too large, we can describe it by listing the elements in it. For example, the equation

$$A = \{1, 2, 3, 4\} \tag{1.1.1}$$

describes a set A made up of the four elements 1, 2, 3, and 4. A set is determined by its elements and not by any particular order in which the elements might be listed. Thus the set A might just as well be specified as $A = \{1, 3, 4, 2\}$. The elements making up a set are assumed to be distinct, and although for some reason we may have duplicates in our list, only one occurrence of each element is in the set. For this reason we may also describe the set A defined in (1.1.1) as $A = \{1, 2, 2, 3, 4\}$.

If a set is a large finite set or an infinite set, we can describe it by listing a property necessary for membership. For example, the equation

$$B = \{x \mid x \text{ is a positive, even integer}\}$$
 (1.1.2)

describes the set B made up of all positive, even integers; that is, B consists of the integers 2, 4, 6, and so on. The vertical bar "|" is read "such that." Equation (1.1.2) would be read "B equals the set of all x such that x is a positive, even integer." Here the property necessary for membership is "is a positive, even integer." Note that the property appears after the vertical bar. The notation in (1.1.2) is called **set-builder notation**.

A set may contain *any* kind of elements whatsoever, and they need *not* be of the same "type." For example,

$$\{4.5, \text{Lady Gaga}, \pi, 14\}$$

is a perfectly fine set. It consists of four elements: the number 4.5, the person Lady Gaga, the number $\pi (= 3.1415...)$, and the number 14.

A set may contain elements that are themselves sets. For example, the set

$$\{3, \{5, 1\}, 12, \{\pi, 4.5, 40, 16\}, \text{Henry Cavill}\}\$$

consists of five elements: the number 3, the set $\{5, 1\}$, the number 12, the set $\{\pi, 4.5, 40, 16\}$, and the person Henry Cavill.

Some sets of numbers that occur frequently in mathematics generally, and in discrete mathematics in particular, are shown in Figure 1.1.1. The symbol **Z** comes from the German word, *Zahlen*, for *integer*. Rational numbers are quotients of integers, thus **Q** for *quotient*. The set of real numbers **R** can be depicted as consisting of all points on a straight line extending indefinitely in either direction (see Figure 1.1.2). †

Symbol	Set	Example of Members
Z Q R	Integers Rational numbers Real numbers	$-3, 0, 2, 145$ $-1/3, 0, 24/15$ $-3, -1.766, 0, 4/15, \sqrt{2}, 2.666, \pi$

Figure 1.1.1 Sets of numbers.

[†]The real numbers can be constructed by starting with a more primitive notion such as "set" or "integer," or they can be obtained by stating properties (axioms) they are assumed to obey. For our purposes, it suffices to think of the real numbers as points on a straight line. The construction of the real numbers and the axioms for the real numbers are beyond the scope of this book.

Figure 1.1.2 The real number line.

To denote the negative numbers that belong to one of \mathbf{Z} , \mathbf{Q} , or \mathbf{R} , we use the superscript minus. For example, \mathbf{Z}^- denotes the set of negative integers, namely -1, -2, -3, Similarly, to denote the positive numbers that belong to one of the three sets, we use the superscript plus. For example, \mathbf{Q}^+ denotes the set of positive rational numbers. To denote the nonnegative numbers that belong to one of the three sets, we use the superscript *nonneg*. For example, \mathbf{Z}^{nonneg} denotes the set of nonnegative integers, namely $0, 1, 2, 3, \ldots$

If X is a finite set, we let |X| = number of elements in X. We call |X| the **cardinality** of X. There is also a notion of cardinality of infinite sets, although we will not discuss it in this book. For example, the cardinality of the integers, Z, is denoted \aleph_0 , read "aleph null." Aleph is the first letter of the Hebrew alphabet.

Example 1.1.1

For the set A in (1.1.1), we have |A| = 4, and the cardinality of A is 4. The cardinality of the set $\{\mathbf{R}, \mathbf{Z}\}$ is 2 since it contains two elements, namely the two sets \mathbf{R} and \mathbf{Z} .

Given a description of a set X such as (1.1.1) or (1.1.2) and an element x, we can determine whether or not x belongs to X. If the members of X are listed as in (1.1.1), we simply look to see whether or not x appears in the listing. In a description such as (1.1.2), we check to see whether the element x has the property listed. If x is in the set X, we write $x \in X$, and if x is not in X, we write $x \notin X$. For example, $3 \in \{1, 2, 3, 4\}$, but $3 \notin \{x \mid x \text{ is a positive, even integer}\}$.

The set with no elements is called the **empty** (or **null** or **void**) **set** and is denoted \emptyset . Thus $\emptyset = \{\}$.

Two sets X and Y are **equal** and we write X = Y if X and Y have the same elements. To put it another way, X = Y if the following two conditions hold:

For every x, if $x \in X$, then $x \in Y$,

and

■ For every x, if $x \in Y$, then $x \in X$.

The first condition ensures that every element of X is an element of Y, and the second condition ensures that every element of Y is an element of X.

Example 1.1.2

If $A = \{1, 3, 2\}$ and $B = \{2, 3, 2, 1\}$, by inspection, A and B have the same elements. Therefore A = B.

Example 1.1.3

Show that if $A = \{x \mid x^2 + x - 6 = 0\}$ and $B = \{2, -3\}$, then A = B.

SOLUTION According to the criteria in the paragraph immediately preceding Example 1.1.2, we must show that for every x,

if
$$x \in A$$
, then $x \in B$, (1.1.3)

and for every x,

if
$$x \in B$$
, then $x \in A$. (1.1.4)

To verify condition (1.1.3), suppose that $x \in A$. Then

$$x^2 + x - 6 = 0$$
.

Solving for x, we find that x = 2 or x = -3. In either case, $x \in B$. Therefore, condition (1.1.3) holds.

To verify condition (1.1.4), suppose that $x \in B$. Then x = 2 or x = -3. If x = 2, then

$$x^2 + x - 6 = 2^2 + 2 - 6 = 0$$

Therefore, $x \in A$. If x = -3, then

$$x^{2} + x - 6 = (-3)^{2} + (-3) - 6 = 0.$$

Again, $x \in A$. Therefore, condition (1.1.4) holds. We conclude that A = B.

For a set X to *not* be equal to a set Y (written $X \neq Y$), X and Y must *not* have the same elements: There must be at least one element in X that is not in Y or at least one element in Y that is not in X (or both).

Example 1.1.4 Let $A = \{1, 2, 3\}$ and $B = \{2, 4\}$. Then $A \neq B$ since there is at least one element in A (1 for example) that is not in B. [Another way to see that $A \neq B$ is to note that there is at least one element in B (namely 4) that is not in A.]

Suppose that *X* and *Y* are sets. If every element of *X* is an element of *Y*, we say that *X* is a **subset** of *Y* and write $X \subseteq Y$. In other words, *X* is a subset of *Y* if for every *x*, if $x \in X$, then $x \in Y$.

Example 1.1.5 If $C = \{1, 3\}$ and $A = \{1, 2, 3, 4\}$, by inspection, every element of C is an element of A. Therefore, C is a subset of A and we write $C \subseteq A$.

Example 1.1.6 Let $X = \{x \mid x^2 + x - 2 = 0\}$. Show that $X \subseteq \mathbb{Z}$.

SOLUTION We must show that for every x, if $x \in X$, then $x \in \mathbb{Z}$. If $x \in X$, then $x^2 + x - 2 = 0$. Solving for x, we obtain x = 1 or x = -2. In either case, $x \in \mathbb{Z}$. Therefore, for every x, if $x \in X$, then $x \in \mathbb{Z}$. We conclude that X is a subset of \mathbb{Z} and we write $X \subset \mathbb{Z}$.

The set of integers **Z** is a subset of the set of rational numbers **Q**. If $n \in \mathbf{Z}$, n can be expressed as a quotient of integers, for example, n = n/1. Therefore $n \in \mathbf{Q}$ and $\mathbf{Z} \subseteq \mathbf{Q}$.

Example 1.1.8 The set of rational numbers \mathbf{Q} is a subset of the set of real numbers \mathbf{R} . If $x \in \mathbf{Q}$, x corresponds to a point on the number line (see Figure 1.1.2) so $x \in \mathbf{R}$.

For *X* to *not* be a subset of *Y*, there must be at least one member of *X* that is not in *Y*.

Example 1.1.9 Let $X = \{x \mid 3x^2 - x - 2 = 0\}$. Show that *X* is not a subset of **Z**.

SOLUTION If $x \in X$, then $3x^2 - x - 2 = 0$. Solving for x, we obtain x = 1 or x = -2/3. Taking x = -2/3, we have $x \in X$ but $x \notin \mathbb{Z}$. Therefore, X is not a subset of \mathbb{Z} .

Any set X is a subset of itself, since any element in X is in X. Also, the empty set is a subset of every set. If \emptyset is *not* a subset of some set Y, according to the discussion preceding Example 1.1.9, there would have to be at least one member of \varnothing that is not in Y. But this cannot happen because the empty set, by definition, has no members.

Notice the difference between the terms "subset" and "element of." The set *X* is a subset of the set $Y(X \subseteq Y)$, if every element of X is an element of Y; x is an element of $X(x \in X)$, if x is a member of the set X.

Example 1.1.10 Let $X = \{1, 3, 5, 7\}$ and $Y = \{1, 2, 3, 4, 5, 6, 7\}$. Then $X \subseteq Y$ since every element of X is an element of Y. But $X \notin Y$, since the set X is not a member of Y. Also, $1 \in X$, but 1 is not a subset of X. Notice the difference between the number 1 and the set {1}. The set $\{1\}$ is a subset of X.

> If X is a subset of Y and X does not equal Y, we say that X is a **proper subset** of Y and write $X \subset Y$.

Example 1.1.11

Let $C = \{1, 3\}$ and $A = \{1, 2, 3, 4\}$. Then C is a proper subset of A since C is a subset of A but C does not equal A. We write $C \subset A$.

Example 1.1.12

Example 1.1.7 showed that **Z** is a subset of **Q**. In fact, **Z** is a proper subset of **Q** because, for example, $1/2 \in \mathbf{Q}$, but $1/2 \notin \mathbf{Z}$.

Example 1.1.13 Example 1.1.8 showed that **Q** is a subset of **R**. In fact, **Q** is a proper subset of **R** because, for example, $\sqrt{2} \in \mathbb{R}$, but $\sqrt{2} \notin \mathbb{Q}$. (In Example 2.2.3, we will show that $\sqrt{2}$ is not the quotient of integers).

> The set of all subsets (proper or not) of a set X, denoted $\mathcal{P}(X)$, is called the **power set** of X.

Example 1.1.14 If $A = \{a, b, c\}$, the members of $\mathcal{P}(A)$ are

$$\emptyset$$
, $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$, $\{b,c\}$, $\{a,b,c\}$.

All but $\{a, b, c\}$ are proper subsets of A.

In Example 1.1.14, |A| = 3 and $|\mathcal{P}(A)| = 2^3 = 8$. In Section 2.4 (Theorem 2.4.6), we will give a formal proof that this result holds in general; that is, the power set of a set with n elements has 2^n elements.

Given two sets X and Y, there are various set operations involving X and Y that can produce a new set. The set

$$X \cup Y = \{x \mid x \in X \text{ or } x \in Y\}$$

is called the **union** of X and Y. The union consists of all elements belonging to either X or Y (or both).

The set

$$X \cap Y = \{x \mid x \in X \text{ and } x \in Y\}$$

is called the **intersection** of X and Y. The intersection consists of all elements belonging to both *X* and *Y*.

The set

$$X - Y = \{x \mid x \in X \text{ and } x \notin Y\}$$

is called the **difference** (or **relative complement**). The difference X - Y consists of all elements in X that are not in Y.

Example 1.1.15 If $A = \{1, 3, 5\}$ and $B = \{4, 5, 6\}$, then

$$A \cup B = \{1, 3, 4, 5, 6\}$$

 $A \cap B = \{5\}$
 $A - B = \{1, 3\}$
 $B - A = \{4, 6\}$.

Notice that, in general, $A - B \neq B - A$.

Example 1.1.16 Since $Q \subseteq R$,

$$R \cup Q = R$$
$$R \cap Q = Q$$
$$Q - R = \emptyset.$$

The set $\mathbf{R} - \mathbf{Q}$, called the set of **irrational numbers**, consists of all real numbers that are not rational.

We call a set S, whose elements are sets, a **collection of sets** or a **family of sets**. For example, if

$$\mathcal{S} = \{\{1,2\},\{1,3\},\{1,7,10\}\},$$

then S is a collection or family of sets. The set S consists of the sets

$$\{1, 2\}, \{1, 3\}, \{1, 7, 10\}.$$

Sets X and Y are **disjoint** if $X \cap Y = \emptyset$. A collection of sets S is said to be **pairwise disjoint** if, whenever X and Y are distinct sets in S, X and Y are disjoint.

Example 1.1.17 The sets $\{1, 4, 5\}$ and $\{2, 6\}$ are disjoint. The collection of sets $S = \{\{1, 4, 5\}, \{2, 6\}, \{3\}, \{3\}, \{3, 6\}, \{3$ {7, 8}} is pairwise disjoint.

> Sometimes we are dealing with sets, all of which are subsets of a set U. This set U is called a **universal set** or a **universe.** The set U must be explicitly given or inferred from the context. Given a universal set U and a subset X of U, the set U - X is called the **complement** of *X* and is written *X*.

Example 1.1.18 Let $A = \{1, 3, 5\}$. If U, a universal set, is specified as $U = \{1, 2, 3, 4, 5\}$, then $\overline{A} = \{2, 4\}$. If, on the other hand, a universal set is specified as $U = \{1, 3, 5, 7, 9\}$, then $\overline{A} = \{7, 9\}$. The complement obviously depends on the universe in which we are working.

Example 1.1.19

Let the universal set be \mathbb{Z} . Then $\overline{\mathbb{Z}}^-$, the complement of the set of negative integers, is \mathbf{Z}^{nonneg} , the set of nonnegative integers.

Go Online

For more on Venn diagrams, see goo.gl/vfki9p

Venn diagrams provide pictorial views of sets. In a Venn diagram, a rectangle depicts a universal set (see Figure 1.1.3). Subsets of the universal set are drawn as circles. The inside of a circle represents the members of that set. In Figure 1.1.3 we see two sets A and B within the universal set U. Region 1 represents $\overline{(A \cup B)}$, the elements in neither A nor B. Region 2 represents A - B, the elements in A but not in B. Region 3 represents $A \cap B$, the elements in both A and B. Region 4 represents B - A, the elements in B but not in A.

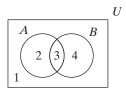


Figure 1.1.3 A Venn diagram.

Example 1.1.20

Particular regions in Venn diagrams are depicted by shading. The set $A \cup B$ is shown in Figure 1.1.4, and Figure 1.1.5 represents the set A - B.

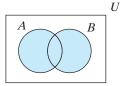


Figure 1.1.4 A Venn diagram of $A \cup B$.

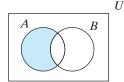


Figure 1.1.5 A Venn diagram of A - B.

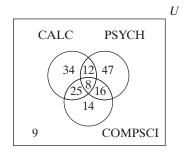


Figure 1.1.6 A Venn diagram of three sets CALC, PSYCH, and COMPSCI. The numbers show how many students belong to the particular region depicted.

To represent three sets, we use three overlapping circles (see Figure 1.1.6).

Example 1.1.21

Among a group of 165 students, 8 are taking calculus, psychology, and computer science; 33 are taking calculus and computer science; 20 are taking calculus and psychology; 24 are taking psychology and computer science; 79 are taking calculus; 83 are taking psychology; and 63 are taking computer science. How many are taking none of the three subjects?

SOLUTION Let CALC, PSYCH, and COMPSCI denote the sets of students taking calculus, psychology, and computer science, respectively. Let U denote the set of all 165 students (see Figure 1.1.6). Since 8 students are taking calculus, psychology, and computer science, we write 8 in the region representing CALC \cap PSYCH \cap COMPSCI. Of the 33 students taking calculus and computer science, 8 are also taking psychology; thus 25 are taking calculus and computer science but not psychology. We write 25 in the region representing CALC \cap PSYCH \cap COMPSCI. Similarly, we write 12 in the region representing CALC \cap PSYCH \cap COMPSCI and 16 in the region representing $\overline{CALC} \cap PSYCH \cap COMPSCI$. Of the 79 students taking calculus, 45 have now been accounted for. This leaves 34 students taking only calculus. We write 34 in the region representing CALC \cap \overrightarrow{PSYCH} \cap $\overrightarrow{COMPSCI}$. Similarly, we write 47 in the region representing $\overline{CALC} \cap PSYCH \cap \overline{COMPSCI}$ and 14 in the region representing

 $\overline{\text{CALC}} \cap \overline{\text{PSYCH}} \cap \text{COMPSCI}$. At this point, 156 students have been accounted for. This leaves 9 students taking none of the three subjects.

Venn diagrams can also be used to visualize certain properties of sets. For example, by sketching both $\overline{(A \cup B)}$ and $\overline{A} \cap \overline{B}$ (see Figure 1.1.7), we see that these sets are equal. A formal proof would show that for every x, if $x \in \overline{(A \cup B)}$, then $x \in \overline{A} \cap \overline{B}$, and if $x \in \overline{A} \cap \overline{B}$, then $x \in \overline{(A \cup B)}$. We state many useful properties of sets as Theorem 1.1.22.

Theorem 1.1.22

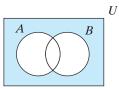


Figure 1.1.7 The shaded region depicts both $\overline{(A \cup B)}$ and $\overline{A} \cap \overline{B}$; thus these sets are equal.

Let U be a universal set and let A, B, and C be subsets of U. The following properties hold.

(a) Associative laws:

$$(A \cup B) \cup C = A \cup (B \cup C), \quad (A \cap B) \cap C = A \cap (B \cap C)$$

(b) Commutative laws:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

(c) Distributive laws:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(d) Identity laws:

$$A \cup \emptyset = A$$
, $A \cap U = A$

(e) Complement laws:

$$A \cup \overline{A} = U$$
, $A \cap \overline{A} = \emptyset$

(f) Idempotent laws:

$$A \cup A = A$$
, $A \cap A = A$

(g) Bound laws:

$$A \cup U = U$$
, $A \cap \emptyset = \emptyset$

(h) Absorption laws:

$$A \cup (A \cap B) = A$$
, $A \cap (A \cup B) = A$

(i) Involution law:

$$\overline{\overline{A}} = A^{\dagger}$$

(j) 0/1 laws:

$$\overline{\varnothing} = U, \quad \overline{U} = \varnothing$$

(k) De Morgan's laws for sets:

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}, \quad \overline{(A \cap B)} = \overline{A} \cup \overline{B}$$

Proof The proofs are left as exercises (Exercises 46–56, Section 2.1) to be done after more discussion of logic and proof techniques. ◀

We define the union of a collection of sets S to be those elements x belonging to at least one set X in S. Formally,

$$\cup \mathcal{S} = \{x \mid x \in X \text{ for some } X \in \mathcal{S}\}.$$

Go Online

For a biography of De Morgan, see goo.gl/vfki9p

 $^{^{\}dagger}\overline{\overline{A}}$ denotes the complement of the complement of A, that is, $\overline{\overline{A}} = \overline{\overline{(A)}}$.

Similarly, we define the intersection of a collection of sets S to be those elements x belonging to every set X in S. Formally,

$$\cap \mathcal{S} = \{ x \mid x \in X \text{ for all } X \in \mathcal{S} \}.$$

Example 1.1.23 Let $S = \{\{1, 2\}, \{1, 3\}, \{1, 7, 10\}\}$. Then $\cup S = \{1, 2, 3, 7, 10\}$ since each of the elements 1, 2, 3, 7, 10 belongs to at least one set in S, and no other element belongs to any of the sets in S. Also $\cap S = \{1\}$ since only the element 1 belong to every set in S.

If

$$\mathcal{S} = \{A_1, A_2, \dots, A_n\},\$$

we write

$$\bigcup \mathcal{S} = \bigcup_{i=1}^{n} A_{i}, \qquad \bigcap \mathcal{S} = \bigcap_{i=1}^{n} A_{i},$$

and if

$$\mathcal{S} = \{A_1, A_2, \ldots\},\$$

we write

$$\bigcup \mathcal{S} = \bigcup_{i=1}^{\infty} A_i, \qquad \bigcap \mathcal{S} = \bigcap_{i=1}^{\infty} A_i.$$

Example 1.1.24 For $i \geq 1$, define $A_i = \{i, i+1, \ldots\}$ and $S = \{A_1, A_2, \ldots\}$. As examples, $A_1 = \{1, 2, 3, \ldots\}$ and $A_2 = \{2, 3, 4, \ldots\}$. Then

$$\bigcup \mathcal{S} = \bigcup_{i=1}^{\infty} A_i = \{1, 2, \ldots\}, \qquad \bigcap \mathcal{S} = \bigcap_{i=1}^{\infty} A_i = \varnothing.$$

A partition of a set X divides X into nonoverlapping subsets. More formally, a collection S of nonempty subsets of X is said to be a **partition** of the set X if every element in X belongs to exactly one member of S. Notice that if S is a partition of X, S is pairwise disjoint and $\cup S = X$.

Example 1.1.25

Since each element of $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$ is in exactly one member of $S = \{\{1, 4, 5\}, \{2, 6\}, \{3\}, \{7, 8\}\}\}, S$ is a partition of X.

At the beginning of this section, we pointed out that a set is an unordered collection of elements; that is, a set is determined by its elements and not by any particular order in which the elements are listed. Sometimes, however, we do want to take order into account. An **ordered pair** of elements, written (a, b), is considered distinct from the ordered pair (b, a), unless, of course, a = b. To put it another way, (a, b) = (c, d) precisely when a = c and b = d. If X and Y are sets, we let $X \times Y$ denote the set of all ordered pairs (x, y) where $x \in X$ and $y \in Y$. We call $X \times Y$ the Cartesian product of X and Y.

Example 1.1.26 If $X = \{1, 2, 3\}$ and $Y = \{a, b\}$, then

$$X \times Y = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$$

$$Y \times X = \{(a, 1), (b, 1), (a, 2), (b, 2), (a, 3), (b, 3)\}\$$

$$X \times X = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

$$Y \times Y = \{(a, a), (a, b), (b, a), (b, b)\}.$$

Example 1.1.26 shows that, in general, $X \times Y \neq Y \times X$.

Notice that in Example 1.1.26, $|X \times Y| = |X| \cdot |Y|$ (both are equal to 6). The reason is that there are 3 ways to choose an element of X for the first member of the ordered pair, there are 2 ways to choose an element of Y for the second member of the ordered pair, and $3 \cdot 2 = 6$ (see Figure 1.1.8). The preceding argument holds for arbitrary finite sets X and Y; it is always true that $|X \times Y| = |X| \cdot |Y|$.

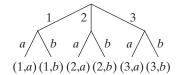


Figure 1.1.8 $|X \times Y| = |X| \cdot |Y|$, where $X = \{1, 2, 3\}$ and $Y = \{a, b\}$. There are 3 ways to choose an element of X for the first member of the ordered pair (shown at the top of the diagram) and, for each of these choices, there are 2 ways to choose an element of Y for the second member of the ordered pair (shown at the bottom of the diagram). Since there are 3 groups of 2, there are $3 \cdot 2 = 6$ elements in $X \times Y$ (labeled at the bottom of the figure).

Example 1.1.27 A restaurant serves four appetizers,

r = ribs, n = nachos, s = shrimp, f = fried cheese,

and three entrees.

$$c = \text{chicken}, \quad b = \text{beef}, \quad t = \text{trout}.$$

If we let $A = \{r, n, s, f\}$ and $E = \{c, b, t\}$, the Cartesian product $A \times E$ lists the 12 possible dinners consisting of one appetizer and one entree.

Ordered lists need not be restricted to two elements. An *n***-tuple**, written (a_1, a_2, \ldots, a_n) , takes order into account; that is,

$$(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n)$$

precisely when

$$a_1 = b_1, a_2 = b_2, \dots, a_n = b_n.$$

The Cartesian product of sets X_1, X_2, \dots, X_n is defined to be the set of all *n*-tuples (x_1, x_2, \dots, x_n) where $x_i \in X_i$ for $i = 1, \dots, n$; it is denoted $X_1 \times X_2 \times \dots \times X_n$.

Example 1.1.28 If $X = \{1, 2\}$, $Y = \{a, b\}$, and $Z = \{\alpha, \beta\}$, then

$$X \times Y \times Z = \{(1, a, \alpha), (1, a, \beta), (1, b, \alpha), (1, b, \beta), (2, a, \alpha), (2, a, \beta),$$

 $(2, b, \alpha), (2, b, \beta)\}.$

Notice that in Example 1.1.28, $|X \times Y \times Z| = |X| \cdot |Y| \cdot |Z|$. In general,

$$|X_1 \times X_2 \times \cdots \times X_n| = |X_1| \cdot |X_2| \cdots |X_n|.$$

We leave the proof of this last statement as an exercise (see Exercise 27, Section 2.4).

Example 1.1.29 If A is a set of appetizers, E is a set of entrees, and D is a set of desserts, the Cartesian product $A \times E \times D$ lists all possible dinners consisting of one appetizer, one entree, and one dessert.